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Abstract:  The computation of state probability distributions at an arbitrary point in time, which in the case of a discrete-time 

Markov chain means finding the distribution at some arbitrary time step 𝑛 denoted𝜋(𝑛), a row vector whose  𝑖𝑡ℎ 

component is the probability that the Markov chain is in state 𝑖 at time step 𝑛, is the iterative solution methods for 

transient distribution in Markov chain. The solutions of transient distribution in Markov chain using uniformization 

methods for large state spaces have been investigated in this study, in order to provide some insight into the 

solutions of transient distribution in Markov chain using uniformization methods for large state spaces, which 

produce a significantly more accurate response in less time for some types of situations and also tries to get to the 

end result as quickly as possible while the solution must be computed when a specified number of well-defined 

stages have been completed. Our goal is to compute solutions and algorithms for large state spaces using 

uniformization methods, which begin with an initial estimate of the solution vector and then alter it in such a way 

that it gets closer and closer to the true solution with each step or iteration, saving time. Matrices operations, such 

as multiplication with one or more vectors, are performed using Markov chain laws, theorems, and formulas. 

                      For an illustrative example, the transient distribution vector’s𝜋(𝑛), 𝑛 = 1, 2, …, ; the value of𝐾, the number of 

terms to be included in the summation are acquired, and the technique is well presented.  

Keywords:  Infinitesimal Generator, Uniformization Method, Runge-Kutta Methods, the Adams Formula, Backward 

Differentiation Formulae 

 
 

 

 

Introduction 

In the discipline of numerical analysis, there are two types of 

solution methods: iterative solution methods and direct 

solution methods. Iterative approaches start with an initial 

estimate of the solution vector and then alter it in such a way 

that it gets closer and closer to the genuine solution with each 

step or iteration. It eventually converges on the true solution. 

If there is no known initial approximation, a guess is 

performed or an arbitrary initial vector is used instead. The 

solution must be computed when a specified number of well-

defined stages have been completed.  For large-scale Markov 

chains, methods currently used to obtain transient solutions 

are based either on readily available differential equation 

solvers such as Runge-Kutta methods or the Adams formulae 

and backward differentiation formulae (BDF). Most of these 

methods experience difficulty when both 𝑚𝑎𝑥𝑗|𝑞𝑗𝑗| (the 

largest exit rate from any state) and t (the time at which the 

solution is required) are large, and there appears to be little to 

recommend a single method for all situations. In this study we 

discuss the uniformization method (also called Jensen’s 

method or the method of randomization). This method is 

extremely simple to program and often outperforms other 

methods, particularly when the solution is needed at a single 

time point close to the origin. If the solution is required at 

many points, or if plots need to be drawn to show the 

evolution of certain performance measures, then a method 

based on one of the differential equation solvers may be 

preferable. An extensive discussion on all these methods may 

be found in Stewart (1994). Romanovsky (1970) established 

the application and simulation of discrete Markov Chains and 

Moler and an Van Loan (1978) explain the nineteen dubious 

ways to compute the exponential of a matrix while Saff 

(1973) explained the degree of the best rational approximation 

to the exponential function and Philippe and Sidje (1993) 

derived the transient solution of Markov Processes by Krylov 

Subspaces, whereas  Stewart (2009) discussed the 

development of Numerical Solutions of Markov chains, while 

Pesch et al.(2015) demonstrated the appropriateness of the 

Markov chain technique in the wind feed in Germany (2015) 

and Agboola (2016) demonstrated the batch processes of 

Markov chain in machine repair problem while Uzun and 

Kiral (2017) used the Markov chain model of fuzzy state to 

anticipate the direction of gold price movement and to 

estimate the probabilistic transition matrix of gold price 

closing returns, whereas Aziza et al. (2019)  used the Markov 

chain model of fuzzy state to predict monthly rainfall data 

(2019). Clement (2019) demonstrated the application of 

Markov chain to the spread of disease infection, 

demonstrating that Hepatitis B became more infectious over 

time than tuberculosis and HIV, while Vermeer and Trilling 

(2020) demonstrated the application of Markov chain to 

journalism. Agboola (2021) introduced direct equation 

solving algorithms compositions of lower -upper triangular 

matrix and Grassmann–Taksar–Heyman for the stationary 

distribution of Markov chains, while Agboola, and Ayoade 

(2021) analysed the matrix geometric and analytical block 

numerical iterative methods for stationary distribution in the 

structured Markov chains. Agboola and Ayinde (2021) 

demonstrated the performance measure analysis on the states 

classification in Markov chain, while Agboola and Badmus 

(2021a) established the application of renewal reward 

processes in homogeneous discrete Markov chain and,  

Agboola and Badmus (2021b) established the application of 

Runge-kutta and backward differentiation methods for solving 

transient distribution in Markov chain.  Agboola (2022a) 

discussed the decomposition and aggregation algorithmic 

numerical iterative solution methods for the stationary 

distribution of Markov chain, while Agboola (2022b) 

analysed and Applied an Irreducible Periodic Markov chain in 

solving random walk and gambler’s ruin,   Agboola and 

Ayinde (2022) discussed the application of successive 

overrelaxation algorithmic and block numerical iterative 

solutions for the stationary distribution in Markov chain and, 

Agboola and Ayoade (2022) introduced the performance 

measure analysis of the reachability matrix and absorption 

probabilities for close and open classification group of states 

in Markov chain, while Agboola, and Nehad (2022). Worked 

on the application of matrix scaling and powering methods of 

small state spaces for solving transient distribution in Markov 

chain, and Agboola and Obilade (2022) demonstrated the 

Relative Mix Transition Probabilities of Three Machine Each 

of Two Different Types in Repairman Problem with Batch 
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Deterministic Repairs.  However, in this study, the analysis of 

transient distribution in Markov chain using the 

Uniformization Method for large spaces is considered 

Notation 

𝜋(𝑛), transient distribution; 𝜋𝑖(𝑡),  the probability that the 

Markov chain is in state 𝑖 at time 𝑡;  𝜋(𝑡), is the transient 

solution at time 𝑡;  𝜋, is the stationary distribution;  𝑃(𝑖),  the 

transition probability matrix at step 𝑖;  𝑄, infinitesimal 

generator; P, the stochastic transition probability matrix of the 

discrete-time Markov chain; 𝜃, the parameter of the Poisson 

process;  𝜀, a tolerance criterion; and  𝐾, the number of terms 

to be included in the summation 

 

Material and Methods 
The study area consisted of the analysis of transient 

distribution in Markov chain using the Uniformization method 

for large spaces. The uniformization method is a widely used 

and often very efficient approach that can be applied to both 

small dense and sparse transition rate matrices as well as large 

sparse transition matrices. It's not ideal for Markov chains 

with a lot of stiffness. In a Markov Chain, the computation of 

state probability distributions at any point in time is known as 

transient distribution. This means finding the distribution at 

any arbitrary time step n in the case of a discrete-time Markov 

chain. 

The probability that the Markov chain is in state 𝑖 at time step 

𝑛 is given by 𝜋(𝑛), a row vector whose 𝑖𝑡ℎ component is the 

probability that the Markov chain is in state 𝑖 at time step 𝑛. 

This fulfills the relationship's requirements.  

𝜋(𝑛) = 𝜋(𝑛−1)𝑃(𝑛 − 1) = 𝜋(0)𝑃(0)𝑃(1) ⋯ 𝑃(𝑛 − 1)   (1) 

where 𝑃(𝑖) is the step 𝑖 transition probability matrix, this is 

reduced for a homogeneous discrete-time Markov chain to 

𝜋(𝑛) = 𝜋(𝑛−1)𝑃 = 𝜋(0)𝑃𝑛   (2) 

where 𝑃(0) = 𝑃(1) = ⋯ = 𝑃.  We seek the distribution at 

any time 𝑖 for a continuous-time Markov chain with 

infinitesimal generator Q. Such a distribution is denoted 𝜋(𝑡), 

a row vector whose component 𝜋𝑖(𝑡) is the probability that 

the Markov chain is in state 𝑖 at time 𝑡and this vector satisfies 

the relationship 

𝜋(𝑡) = 𝜋(0)𝑒𝑄𝑡    (3) 

where 𝑒𝑄𝑡 is the matrix exponential defined by 

𝑒𝑄𝑡 = ∑
(𝑄𝑡)𝑘

𝑘!
∞
𝑘=0 .    (4) 

In both cases, what is usually required is the probability 

distribution 𝜋(𝑛) or 𝜋(𝑡). The uniformization method revolves 

around a discrete-time Markov chain that is embedded in the 

continuous-time process. The transition probability matrix of 

this discrete-time chain is constructed as 

𝑃 = 𝑄∆𝑡 + 𝐼    (5) 

With ∆𝑡 <
𝟏

𝑚𝑎𝑥𝑖|𝑞𝑖𝑖|
.  In this Markov chain all state transitions 

occur at a uniform rate equal to 
𝟏

∆𝑡
,  hence the name 

uniformization. Letting 𝜃 = 𝑚𝑎𝑥𝑖|𝑞𝑖𝑖|, we may write 

𝑄 = 𝜃(𝑃 − 𝐼)      (6) 

and inserting this into the Kolmogorov forward differential 

equations we get 

𝜋(𝑡) = 𝜋(0)𝑒𝑄𝑡 = 𝜋(0)𝑒𝜃(𝑃−𝐼)𝑡 = 𝜋(0)𝑒−𝜃𝑡𝑒𝜃𝑃𝑡 .  (7) 

Expanding 𝑒𝜃𝑃𝑡 in a Taylor’s series, we obtain 

𝜋(𝑡) = 𝜋(0)𝑒−𝜃𝑡 ∑
(𝜃𝑡𝑃)𝑘

𝑘!
=∞

𝑘=0 𝜋(0)𝑒−𝜃𝑡 ∑
(𝜃𝑡)𝑘𝑃𝑘

𝑘!

∞
𝑘=0        (8) 

  

= 𝜋(0)𝑃𝑘 ∑
 (𝜃𝑡)𝑘

𝑘!
∞
𝑘=0 𝑒−𝜃𝑡 .                          (9)     

There are two points to consider. First, the term 𝜋(0)𝑃𝑘may 

be regarded as the vector that provides the probability 

distribution after k steps of a discrete-time Markov chain with 

stochastic transition probability matrix P and initial 

distribution 𝜋(0). Second, the Poisson process with rate 𝜃 

defined as the probability of 𝑘 events happening in [0, t)  

yields the expression 𝑒−𝜃𝑡  (𝜃𝑡)𝑘

𝑘!
  Which is the probability that 

the discrete-time Markov chain will take 𝑘 transition steps in 

the interval [0, t). These probabilities can be interpreted as 

weights that, when multiplied by the discrete-time Markov 

chain's distribution after 𝑘 steps and summed over all possible 

number of steps, yield the transient distribution 𝜋(𝑡). The 

uniformization method calculates the distribution 𝜋(𝑡) 

directly from Equation (9). Writing it in the form 

𝜋(𝑡) = 𝑒−𝜃𝑡 ∑ (𝜋(0)𝑃𝑘−1  
(𝜃𝑡)𝑘−1

(𝑘−1)!
) 𝑃∞

𝑘=0
𝜃𝑡

𝑘
 (10) 

exposes a convenient recursive formulation. Setting   𝑥 = 𝜋 =
𝜋(0) \ and iterating sufficiently long with 

𝑥 = 𝑥 (𝑃
𝜃𝑡

𝑘
) ,    𝜋 = 𝜋 + 𝑥    (11) 

allows 𝜋(𝑡) = 𝑒−𝜃𝑡𝜋  to be used to construct the transient 

distribution.  𝜋(𝑡) might be derived more readily straight from 

the Chapman-Kolmogorov differential equations using the 

formula. 

𝜋(𝑡) = 𝜋(0) ∑
 (𝑄𝑡)𝑘

𝑘!
∞
𝑘=0 .   (12) 

However, because the matrix Q contains both positive and 

negative components, some of which may be bigger than one, 

the algorithm is less stable than one based on the matrix P, 

which, as a stochastic matrix, has all positive members in the 

range [0, 1]. Hence, Equation (9) is appropriate. The 

uniformization technique's numerical advantages include its 

simplicity of translation into computer code and the control it 

provides over the truncation error. We need to truncate the 

infinite series in order to fix the truncation mistake in the 

uniformization equation (9). 

𝜋∗(𝑡) = ∑ 𝜋(0)𝑃𝑘  
 (𝜃𝑡)𝑘

𝑘!
𝐾
𝑘=0 𝑒−𝜃𝑡 .     (13) 

Also, let 𝜏(𝑡) = 𝜋(𝑡) − 𝜋∗(𝑡). ||𝜏(𝑡)|| is the truncation error 

for any consistent vector norm. This inaccuracy can easily be 

quantified mathematically. If we choose K to be large enough, 

1 − ∑  
 (𝜃𝑡)𝑘

𝑘!

𝐾

𝑘=0

𝑒−𝜃𝑡 ≤ 𝜀 

or, equivalently, that 

∑  
 (𝜃𝑡)𝑘

𝑘!
𝐾
𝑘=0 ≥

1−𝜀

𝑒−𝜃𝑡
= (1 − 𝜀)𝑒𝜃𝑡 ,   (14) 

Where 𝜀 is a predetermined truncation condition, it follows 

that 
‖𝜋(𝑡) − 𝜋∗(𝑡)‖∞ ≤ 𝜀   (15) 

To see this, observe that 

‖𝜋(𝑡) − 𝜋∗(𝑡)‖∞ = ‖∑ 𝜋(0)𝑃𝑘  
 (𝜃𝑡)𝑘

𝑘!

∞

𝑘=0

𝑒−𝜃𝑡

− ∑ 𝜋(0)𝑃𝑘  
 (𝜃𝑡)𝑘

𝑘!

𝐾

𝑘=0

𝑒−𝜃𝑡‖

∞

 

= ‖ ∑ 𝜋(0)𝑃𝑘  
 (𝜃𝑡)𝑘

𝑘!

∞

𝑘=𝐾+1

𝑒−𝜃𝑡‖

∞

≤ ∑  
 (𝜃𝑡)𝑘

𝑘!

𝐾

𝑘=0

𝑒−𝜃𝑡 

= ∑  
 (𝜃𝑡)𝑘

𝑘!

∞

𝑘=0

𝑒−𝜃𝑡 − ∑  
 (𝜃𝑡)𝑘

𝑘!

𝐾

𝑘=0

𝑒−𝜃𝑡 

= 1 − ∑  
 (𝜃𝑡)𝑘

𝑘!
𝐾
𝑘=0 𝑒−𝜃𝑡 ≤ 𝜀.     (16) 
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Results and Discussion 

This section discusses the derivation of formulae for 

performance measures obtained from the illustrative example 

such as stationary distribution 𝜋, transient distribution 𝜋(𝑛), 
Illustrative Example: Consider a Markov chain with an 

infinitesimal generator that runs indefinitely. 

𝑄 = (
−5 2 3
1 −2 1
6 4 −10

) 

With 𝜋(0) = (1 0 0) and 𝑡 = 1, we want to see how 

Equation (1) behaves as the number of terms in the 

summation grows. The uniformization method yields a value 

of 𝜃 = 10 and 

𝑃 = (
0.5 0.2 0.3
0.1 0.8 0.1
0.6 0.44 0

) 

Assuming we need a precision of tenths of a 𝜀 = 10−6. To 

determine the value of 𝐾, the number of terms to be included 

in the summation, we proceed step by step, increasing 𝑘 until 

the desired result is obtained. 

𝜗𝐾 = ∑  
 (𝜃𝑡)𝑘

𝑘!

𝐾

𝑘=0

≥ (1 − 𝜀)𝑒𝜃𝑡 = (1 − 10−6)𝑒10

= 22,026.44. 
Observe that successive terms in the summation satisfy 

𝜔𝐾+1 = 𝜔𝐾
𝜃𝑡

𝐾+1
   𝑤𝑖𝑡ℎ   𝜔0 = 1  (17) 

and that 

𝜗𝐾+1 = 𝜗𝐾 + 𝜔𝐾+1  𝑤𝑖𝑡ℎ  𝜗0 = 1,    (18) 

and so, beginning with K = 0, and using this recursion, we 

successively compute 

𝜗0 = 1,   𝜗1 = 11,     𝜗2 = 61,      𝜗3 = 227.667,   𝜗4 =
644.333, ⋯ , 𝜗28 = 22,026.45, 
As a result, the summing requires K = 28 terms. We must 

compute to get our estimate to the transient distribution at 

time t = 1 

𝜋(𝑡) ≈ 𝜋(0)𝑃𝑘 ∑
 (𝜃𝑡)𝑘

𝑘!

28
𝑘=0 𝑒−𝜃𝑡 .    (19) 

for some initial distribution, 𝜋(0) = (1 0 0). Using the 

recursion relation of Equation (11), 

we find 

𝑘 =  0 ∶  𝑥 =  (1, 0, 0);  𝜋 =  (1, 0, 0), 
𝑘 =  1 ∶  𝑥 =  (5, 2, 3);  𝜋 =  (6, 2, 3), 

𝑘 =  2 ∶  𝑥 =  (22.5, 19, 8.5);  𝜋 =  (28.5, 21, 11.5), 
𝑘 =  3 ∶  𝑥 =  (60.8333, 77, 28.8333);  𝜋 

=  (89.3333, 98, 40.3333), 
⋮ 

𝑘 =  28 ∶  𝑥 = (. 009371, .018742, .004686); 𝜋
= (6, 416.9883, 12, 424.44968, 3, 184.4922). 
In this example, the elements of 𝑥 increase until they reach 

𝑥 =  (793.8925, 1, 566.1563, 395.6831) 

For 𝑘 =  10 and then they begin to decrease. Multiplying the 

final 𝜋 vector by 𝑒−10 produces the desired transient 

distribution: 

𝜋(1)  =  𝑒−10(6, 416.9883, 12, 424.44968, 3, 184.4922)  
=  (.291331, .564093, .144576). 

We can code Equation (9) exactly as it appears in the 

uniformization technique, with the understanding that π(0)𝑃k 

is computed iteratively, i.e., we do not construct the 𝑘𝑡ℎ 

power of 𝑃 and pre-multiply it with π(0), but instead form the 

sequence of vectors, ψ( j +  1)  =  ψ( j )P, with ψ(0)  =
 π(0), so that π(0)𝑃k is given by ψ(k). We could also divide 

Equation (9) into time steps 0 = t0, t1, t2, t3, ⋯ , tm = t 
and create code to implement them. 

𝜋(𝑡𝑖+1) = ∑ 𝜋(𝑡𝑖)𝑃𝑘  
 (𝜃)𝑘(𝑡𝑖+1−𝑡𝑖)𝑘

𝑘!
∞
𝑘=𝐾+1 𝑒−𝜃(𝑡𝑖+1−𝑡𝑖)    (20) 

recursively for 𝑖 =  0, 1, . . . , (𝑚 −  1). If the transient 

solution is required at various points 𝑡1, 𝑡2, ⋯, between the 

initial time 𝑡0 and the end time 𝑡, the second approach is the 

obvious way to execute the computation. If the transient 

solution is only required at a single terminal point, it is 

computationally more expensive. When the numerical values 

of  𝜃 and 𝑡 are such that the computer underflows when 

computing 𝑒−𝜃(𝑡), it may be useful. 

Such occurrences can be foreseen in advance and appropriate 

action taken. One might, for example, elect not to allow 𝑡 

values to exceed 100. When this happens, divide the time 𝑡 

into 𝑑 = 1 + (
𝜃𝑡

100
) equal intervals and compute the transient 

solution at times𝑡/𝑑, 2𝑡/𝑑, 3𝑡/𝑑, . . . , 𝑡.. When implementing 

such a procedure, caution must be exercised because errors in 

the computation of intermediate values 𝜋(𝑡𝑖) may propagate 

to subsequent values𝜋(𝑡𝑗), 𝑗 > 𝑖. An alternative to dividing a 

large interval 𝜃𝑡 into more manageable pieces may be to omit 

from the summation in Equation (16) expressions for which 

the value of  𝑒−𝜃𝑡  (𝜃𝑡)𝑘

𝑘!
  is so small that it may generate 

numerical difficulties. This can be performed by selecting a 

left truncation point, 𝑙, as the largest value for which 

∑
 (𝜃𝑡)𝑘

𝑘!
𝑙−1
𝑘=0 𝑒−𝜃𝑡 ≤ 𝜀𝑖   (21) 

The needed transient distribution vector is now computed as 

for some lower limit𝜀𝑖. 

𝜋∗(𝑡) = ∑ 𝜓(𝑘)
 (𝜃𝑡)𝑘

𝑘!
𝐾
𝑘=0 𝑒−𝜃𝑡                 (22) 

as previously, with 𝜓(𝑘) computed recursively, the value of  𝑙 
can be easily calculated using the same approach as the upper 

limit of the summation, 𝐾. i.e., from 𝑘 =  0 to 𝑘 =  𝐾 must 

be computed in all circumstances, the amount of effort 

involved in summing from 𝑘 = 𝑙 is essentially the same as 

summing from𝑘 =  0. Since 𝜓(𝑘) from 𝑘 =  0 to 𝑘 =  𝐾 

must be computed in all cases. The only reason in summing 

from 𝑘 =  𝑙 is that of computational stability. One other 

wrinkle may be added to the uniformization method when it is 

used to compute transient distributions at large values of 𝜃𝑡 

—the stationary distribution of the uniformized chain may be 

reached well before the last term in the equation (13). If this is 

the case, it means that, from the point at which steady state is 

reached, the values 𝜓(𝑘) no longer change. It is possible to 

monitor convergence of the uniformized chain and to 

determine the point at which it reaches steady state. Assume 

this happens when 𝑘 is set to 𝑘𝑠. After that, the transient 

distribution at time 𝑡 can be estimated more efficiently as 

𝜋∗(𝑡) = ∑ 𝜓(𝑘)
 (𝜃𝑡)𝑘

𝑘!

𝑘𝑠
𝑘=1 𝑒−𝜃𝑡 + (∑  

 (𝜃𝑡)𝑘

𝑘!

𝐾
𝑘=𝑘𝑠+1 𝑒−𝜃𝑡) 𝜓(𝑘𝑠)      (23) 

The following two-step algorithm computes the transient 

solution 𝜋(𝑡) at time 𝑡 given the probability distribution 𝜋(0) 

at time 𝑡 =  0; 𝑃, the discrete-time Markov chain's stochastic 

transition probability matrix;  𝜃, the Poisson process's 

parameter; and, 𝜀, a tolerance condition. It is intended for use 

when the Markov chain has a large number of states. The 

matrix 𝑃 is only used in one operation: multiplication with a 

vector. This implementation does not include a lower limit or 

a test for steady-state convergence. The algorithm can be 

computed as follows: 

1. Use Equation (18) to compute 𝐾, the number of terms in 

the summation: 

• Set  𝐾 =  0;  𝜔 =  1;  𝜗 =  1;  𝜂 =  (1 −  𝜀)/𝑒−𝜃𝑡 . 

• While 𝜗 <  𝜂 do 

◦ Compute 𝐾 =  𝐾 +  1;  𝜔  =  𝜔  × (𝜃𝑡)/𝐾;  𝜗 =  𝜗 +  𝜉 .  

2. Approximate π(t) from Equation (13): 

• Set 𝜋 =  𝜋(0);  𝑥 =  𝜋(0). 

• For 𝑘 =  1 𝑡𝑜 𝐾 do 

◦ Compute 𝑥 =  𝑥𝑃 ×  (𝜃𝑡)/𝑘;  𝜋 =  𝜋 +  𝑥. 

• Compute 𝜋(𝑡)  =  𝑒−𝜃𝑡𝜋. 
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Conclusion 

In this study, The solutions of transient distribution in Markov 

chain using uniformization methods for large state spaces, 

which produce a significantly more accurate response in less 

time for some types of situations and also, tries to get to the 

end result as quickly as possible while the solution must be 

computed when a specified number of well-defined stages 

have been completed has been investigated, in order to 

provide some insight into the solutions of transient 

distribution in Markov chain. Our goal is to compute the 

solutions and algorithms using uniformization methods for 

large state spaces that start with an initial estimate of the 

solution vector and then alter it in such a way that it gets 

closer and closer to the genuine solution with each step or 

iteration, which saves time.  Matrices operations such as 

multiplication with one or more vectors, are used with the 

help of some existing laws, theorems and formulas of Markov 

chain. The transient distribution vector’s𝜋(𝑛), 𝑛 = 1, 2, …, ; 
the value of 𝐾, the number of terms to be included in the 

summation are obtained for an illustrative example and the 

algorithm is well presented. 
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